Intelligent System

1.Dasar intelligent system

AI (Artificial Intelligence) atau Kecerdasan Buatan merupakan salah satu cabang ilmu computer yang mempelajari bagaimana cara membuat sebuah mesin cerdas, yaitu mesin yang mempunyai kemampuan untuk belajar dan beradaptasi terhadap sesuatu.

Jika diartikan tiap kata, artificial artinya buatan, sedangkan intelligence adalah kata sifat yang berarti cerdas. Jadi artificial intelligence maksudnya adalah sesuatu buatan atau suatu tiruan yang cerdas. Cerdas di sini kemungkinan maksudnya adalah kepandaian atau ketajaman dalam berpikir, seperti halnya otak manusia dalam menyelesaikan suatu masalah.


Tujuan dari riset-riset Artificial Intelligence (AI) / Kecerdasan Buatan adalah bagaimana membuat sebuah mesin bisa berfikir sama halnya dengan manusia yang bisa berfikir. AI digunakan untuk menjawab problem yang tidak dapat diprediksi dan tidak bersifat algoritmik atau prosedural. Sampai saat ini, para peneliti di bidang AI masih banyak menyimpan pekerjaan rumah mereka disebabkan kompleksitas penelitian di bidang Artificial Intelligence (AI) / Kecerdasan Buatan serta faktor dukungan teknologi untuk merealisasikannya. Karena area cakupan yang luas, Artificial Intelligence (AI) / Kecerdasan Buatan dibagi lagi menjadi subsub bagian di mana sub-sub bagian tersebut dapat berdiri sendiri dan juga dapat saling melengkapi satu dengan lainnya.

Perbedaan antara Kecerdasan Buatan (Komputer) dengan Kecerdasan Alami (Manusia)

Kecerdasan Buatan:
  • Bersifat permanen
  • Mudah diduplikasi dan disebarluaskan
  • Dapat lebih murah daripada manusia cerdas
  • Konsisten dan menyeluruh
  • Dapat didokumentasikan

Kecerdasan Alami:
  • Bersifat kreatif
  • Menggunakan pengalaman panca indra secara langsung
  • Menalar berdasarkan pemahaman yang luas dari pengalaman
  • Memiliki tingkat ketrampilan yang luas mulai dari pemula, pemula lanjut, kompeten,
  • profisien, dan ahli (expert)

4 Dasar Kategori di Konsep dasar Ai(Kecerdasan Buatan)

1. Acting Humanly

Acting humanly ialah system yang melakukan pendekatan dengan menirukan tingkah laku seperti manusia yang dikenalkan pada tahun 1950 degan cara kerja pengujian melalui teletype yaitu jika penguji (integrator) tidak dapat membedakan yang mengintrogasai antara manusia dan computer maka computer tersebut dikatakan lolos(menjadi kecerdasan buatan).

2. Thinking Humanly

Yaitu system yang dilakukan dengan cara intropeksi yaitu penangkapan pemikiran psikologis
Manusia pada computer,hal ini sering diujikan dengan neuron ke neuron lainnya atau sel otak dengan sel otak lainnya cara pembelajarannya yaitu melalui experiment-experimen.

3. Thinking Rationaly

Ini merupakn system yang sangat sulit ,karena sering terjadi kesalah dala, prinsip dan prakteknya,system ini dikenal dengan penalaran komputasi.

4. Actng Rationaly

Yaitu system yang melakukan aksi dengan cara menciptakan suatu robotika cerdas yang menggantikan tugas manusia.

Disiplin Ilmu AI

Seperti yang telah disebutkan di atas bahwa AI merupakan salah satu cabang Ilmu Komputer. Tapi karena kompleksitas area AI maka dibuat sub-sub bagian yang dapat berdiri sendiri dan dapat saling bekerja sama dengan sub bagian lain atau dengan disiplin ilmu lain. Berikut ini beberapa cabang ilmu sub bagian dari AI :

1. Natural Languange Processing (NLP)

Natural Languange Processing (NLP) atau Pemrosesan Bahasa Alami, merupakan salah satu cabang AI yang mempelajari pembuatan sistem untuk menerima masukan bahasa alami manusia. Dalam perkembangannya, NLP berusaha untuk mengubah bahasa alami komputer (bit dan byte) menjadi bahasa alami manusia yang dapat kita mengerti. NLP merupakan ilmu dasar yang dapat dijadikan jembatan untuk membuat komunikasi antara mesin dengan manusia.

2. Expert System (ES)

Expert System (ES) atau Sistem Pakar, merupakan salah satu cabang AI yang mempelajari pembuatan sebuah sistem yang dapat bekerja layaknya seorang pakar. ES dapat menyimpan pengetahuan seorang pakar dan memberikan solusi berdasarkan pengetahuan yang dimilikinya tadi. ES juga merupakan salah satu cabang AI yang sering melakukan kerja sama dengan disiplin ilmu lain karena sifatnya yang dapat menyimpan pengetahuan.

3. Pattern Recognition (PR)

Pattern Recognition (PR) atau Pengenalan Pola, merupakan salah satu cabang AI yang mempelajari pembuatan sebuah sistem untuk dapat mengenali suatu pola tertentu. Misalnya sistem PR untuk mengenali huruf dari tulisan tangan, walaupun terdapat perbedaan penulisan huruf A dari masing-masing orang tetapi PR dapat mengenali bahwa huruf tersebut adalah huruf A. Beberapa aplikasi dari PR antara lain : voice recognition, Fingerprint Identification, Face Identification, Handwriting Identification, Optical Character Recognition, Biological Slide Analysis, Robot Vision dan lainnya.

4. Robotic

Robotic atau Robotika, merupakan salah satu cabang AI yang menggabungkan cabangcabang AI yang lain termasuk ketiga cabang di atas untuk membentuk sebuah sistem robotik. Keempat cabang AI di atas merupakan cabang umum yang banyak dipelajari, masih banyak cabang-cabang AI yang lainnya. Seiring perkembangan riset dalam AI, dapat dimungkinkan akan muncul cabang-cabang baru yang melengkapi unsur AI sehingga AI menjadi sebuah sistem lengkap dan akan mencapai goal-nya yang sampai sekarang masih belum sempurna.

Contoh-contoh Aplikasi AI

Berikut ini beberapa contoh-contoh aplikasi AI yang sudah diterapkan dan memberikan sumbangsih yang cukup diperhitungkan dalam kemajuan teknologi. Kebanyakan aplikasi AI yang banyak dipakai diambil dari bidang Expert System, diantaranya adalah :

a. Bidang Pertanian

Pada bidang Pertanian, dibuat ES untuk memprediksi kerusakan pada jagung yang disebabkan oleh ulat hitam dan memberikan konsultasi untuk mendiagnosa kerusakan pada kacang kedelai dengan menggunakan pengetahuan tentang gejala kerusakan dan lingkungan tanaman.

b. Bidang Kimia

Pada bidang Kimia, dibuat ES untuk menganalisa struktur DNA dari pembatasan segmentasi data enzim dengan menggunakan paradigmagenerate & test.

c. Bidang Sistem Komputer

Pada bidang Sistem Komputer, dibuat ES untuk membantu operator komputer untuk monitoring dan mengontrol MVS (multiple virtual storage) sistem operasi pada komputer mainframe IBM.

d. Bidang Elektronik

Pada bidang Elektronik, dibuat ES untuk mengidentifikasi masalah pada jaringan telepon, ES untuk simulasi perancangan DLC (digital logic circuits) dan mengajari pelajar bagaimana cara mengatasi masalah pada sirkuit elektronik.

e. Bidang Hukum

Pada bidang Hukum, dibuat ES untuk membantu para auditor profesional dalam mengevaluasi potensi kegagalan pinjaman klien berdasarkan sejarah pinjaman, status ekonomi, kondisi piutang.

f. Bidang Militer

Pada bidang Militer, dibuat ES untuk membantu menganalisa perkiraan situasi pertempuran, memberikan interpretasi taktik laporan sensor intelijen dan memberikan rekomendasi alokasi senjata kepada komandan militer pada saat situasi perang.

Di atas merupakan beberapa contoh dari AI yang sudah diaplikasikan dalam beberapa bidang. Masih banyak aplikas-aplikasi AI yang tidak mungkin disebutkan semua di sini. Beberapa contoh di atas sudah dapat memberikan gambaran bahwa cakupanArtificial Intelligence (AI) / Kecerdasan Buatantidak hanya dibidang ilmu komputer tetapi bisa bekerja sama dengan bidang lain untuk menciptakan sebuah sistem yang saling mendukung.

2.Area topic pada bidang intelligent system

Penerapan AI meliputi berbagai bidang seperti ditunjukkan pada bagian cabang dari pohon AI pada Gambar 1, sedangkan induk keilmuan AI dapat dilihat pada akar dari pohon AI yang antara lain meliputi: Bahasa/linguistik, Psikologi, Filsafat, Matematik, Teknik Elektro, Ilmu Komputer, dan Ilmu Manajemen. Bidang aplikasi AI yang umum ditemui saat ini antara lain adalah:
Sistem Pakar (Expert Systems), yaitu program konsultasi (advisory) yang mencoba menirukan proses penalaran seorang pakar/ahli dalam memecahkan masalah yang rumit. Sistem Pakar merupakan aplikasi AI yang paling tua dan banyak dikembangkan. Jadi dalam hal ini kepakaran manusia seolah-olah dipindahkan kedalam hardisk komputer.
Case Based Reasoning (CBR). CBR adalah suatu pendekatan untuk mendapatkan solusi dengan menggunakan acuan solusi problem-problem terdahulu untuk memecahkan problem yang baru. Jadi, CBR memecahkan masalah baru dengan menggunakan solusi masalah lama yang serupa atas dasar analogi. CBR dapat diibaratkan memindahkan database kasus-kasus yang telah dimiliki oleh seorang pakar kedalam hardisk komputer untuk dipakai menyelesaikan kasus baru yang serupa.
Image and Vision System
Mengingat komputer mampu mengenal jutaan warna, mampu mengenal pola, serta mempunyai resolusi yang tinggi (pixel) maka aplikasi yang berhubungan gambar, warna dan pola sangat banyak ditemukan. Sistem citra dan pandang dikembangkan di universitasMassachusetts, dalam bentuk image baik warna tiga dimensi maupun dua dimensi. Sistem visi memberikan solusi yang baik dari permasalahan yang berhubungan dengan kegiatan manusia sehari-hari, misalnya saat berjalan-jalan disekitar rumah, mata dan otak akan bekerja membentuk sistem vision yang kompleks, dengan demikian seseorang tersebut akan mengenali serta membedakan satu objek dengan yang lainnya bahkan gerakan dari suatu objek dan mengevaluasi bentuk (halus, kasar, mengkilap, transparan, dan lain sebagainya). Tujuan utama dari komputer visi adalah untuk menerjemahkan suatu pemandangan/citra. Komputer visi banyak dipakai dalam kendali kualitas produk industri dan kedokteran.
Pemrosesan Bahasa Alami (Natural Language Processing), yaitu program yang memberi kemampuan pada komputer untuk berkomunikasi dengan user dengan menggunakan bahasa manusia yang alami seperti dalam bahasa Indonesia, Inggris, Jepang atau yang lainnya.Natural Language Processing berkesimpulan jika seseorang dapat mendefinisikan semua pola tersebut dan menjelaskannya pada komputer maka hal ini akan mempermudah seseorang untuk mempelajari mesin komputer tentang bagaimana berbicara dengan komputer dan memahami maksudnya, karena komunikasi dapat dilakukan melalui tata bahasa yang sederhana ketimbang menggunakan aturan-aturan atau tata bahasa pemrograman komputer rumit dan njlimet (complicated).  Alangkah indahnya bila suatu saat mendatang user hanya mengetikkan kalimat melalui keyboard dengan bahasa alami dan komputer dapat mengerti apa maksud kalimat yang diketikkan tersebut.
Voice Recognition (Pengenalan Suara)
Voice recognition adalah teknik agar komputer dapat mengenali dan memahami bahasa ucapan. Proses ini mengijinkan seseorang berkomunikasi dengan komputer dengan cara berbicara kepadanya. Istilah “pengenalan suara” mengandung arti bahwa tujuan utamanya adalah mengenai kata yang diucapkan tanpa harus tahu artinya, di mana bagian itu merupakan tugas “pemahaman suara”. Secara umum prosesnya adalah usaha untuk menerjemahkan apa yang diucapkan seorang manusia menjadi kata-kata atau kalimat yang dapat dimengerti oleh komputer. Hal ini didasari oleh pemikiran para ahli bagaimana jika user hanya mendiktekan kalimat melalui speaker dan komputer dapat mengerti apa maksud kalimat yang diucapkan tersebut.

Sistem Sensor dan Robotika.
Robot merupakan gabungan dari unsur sperti: sistem mekanis, sistem visi dan pencitraan, dan sistem pengolahan sinyal. Sebuah robot, yaitu perangkat elektromekanik yang diprogram untuk melakukan tugas manual, tidak semuanya merupakan bagian dari AI. Robot yang hanya sekedar melakukan aksi atas dasar switch-switch mekanis/elektris dikatakan sebagai robot bodoh yang tidak lebih pintar dari sekedar lift. Robot yang cerdas biasanya mempunyai perangkat sensor, seperti kamera, yang mengumpulkan informasi mengenai operasi dan lingkungannya. Kemudian bagian AI robot tersebut menerjemahkan informasi tadi dan merespon serta beradaptasi jika terjadi perubahan lingkungan.
Intelligent Tutoring/Intelligent Computer-Aided Instructio(CAI)
CAI adalah komputer yang mampu mengajari manusia. Belajar melalui komputer sudah lama digunakan, namun dengan menambahkan aspek kecerdasan di dalamnya, dapat tercipta komputer “guru” yang dapat mengatur teknik pengajarannya untuk menyesuaikan dengan kebutuhan “murid” secara individiual. Unsur sistem database dan query yang canggih sangat dominan dalam CAI. Sistem ini juga mendukung pembelajaran bagi orang yang mempunyai kekurangan fisik atau kelemahan belajar. Kelebihan CAI ini, yaitu : material dapat diatur sesuai dengan kebutuhan/kemampuan pemakai, perbaikan dapat langsung diberikan, umpan balik secara cepat, pengajaran yang konsisten, materi belajar mudah diedit, dan tidak ada batasan lokasi.
Artificial Neural Network (ANN)
ANN merupakan jaringan saraf tiruan, suatu teknologi informasi yang meniru unsur biologi manusia seperti otak dan sistem saraf. ANN mampu belajar seperti seorang bocah, jadi dari tidak tahu sama sekali menjadi tahu sekali, melalui proses pembelajaran. ANN sangat ekselen untuk bidang pengenalan citra, pengklasifikasian, dan penginterpretasian data yang tidak sempurna.
Game Playing (GP, Permainan Game)
Software permainan muncul bagaikan jamur, video game sangat diminati oleh manusia dewasa dan kanak-kanak. Permainan adalah bidang yang bagus untuk menganalisa kecerdasan suatu komputer. Adadua alasan yang menyebabkan hal tersebut, yaitu : permainan mengandung pola yang terstruktur untuk mencapai kemenangan atau kekalahan dengan mudah, dan permainan membutuhkan strategi yang tepat untuk dapat menang. Permainan dapat diselesaikan dengan pencarian mulai dari posisi start sampai ke posisi menang (winning position). Sebelum melakukan pencarian, posisi-posisi yang sah dalam permainan perlu dibangkitkan terlebih dahulu oleh suatu prosedur. GP dirancang supaya dapat melakukan evaluasi/pencarian solusi ke depan dari posisi awal sampai posisi yang menuju kemenangan. GP yang populer adalah Deep Thought dari IBM, program catur yang dipertandingkan melawan Grand Master Anatoly Karpov dengan hasil remis, luar biasa: suatu software komputer dapat bermain remis dengan seorang professor catur!
Fuzzy Logic (Logika Fazi)
Kata fazi berarti kabur atau samar-samar. Logika fuzzy merupakan suatu cabang logika yang menggunakan derajat keanggotaan kebenaran (dari nol sampai dengan satu), sedangkan logika klasik hanya mengelompokan derajat keanggotaan kebenaran menjadi dua nol (salah) atau satu (benar). Dengan menggunakan sistem inferensi Fuzzy yang didasarkan pada konsep teori fuzzy, aturan fuzzy if-then, dan logika fuzzy, maka diperoleh solusi yang baik dan yang mampu mengikuti perubahan variabel bebas secara halus sekali.
Genetic Algorithm (GA, Algoritma Genetika)
Algoritma genetika adalah algoritma pencarian heuristik yang didasarkan atas mekanisme evolusi biologis. Prinsip evolusi berbasis “survival of the fittest” (yang menang/bertahan adalah yang kuat/mampu menyesuaikan diri) dimanfaatkan dalam GA. GA cocok sekali untuk persoalan optimasi dengan banyak alternatip solusi. Misalnya menyusun suatu ramuan obat dari berbagai unsur dengan kemungkinan yang banyak sekali. Pada algoritma ini, teknik pencarian dilakukan sekaligus atas sejumlah solusi yang dikenal dengan istilah populasi. Individu yang terdapat dalam satu populasi  disebut dengan istilah string (string) atau kromosom (chromosome). Cara mendapatkan solusi optimal adalah menghitung nilai fitnessdari setiap individu. Fungsi untuk menghitung nilai fitness disebut fungsi fitness yang dapat berupa fungsi matematika atau fungsi lainnya dengan melihat kriteria tertentu dari permasalahan yang hendak diselesaikan. Dengan fungsi fitness yang menghasilkan nilaifitness dari suatu kromosom maka dapat dibedakan antara kromosom yang berkualitas baik dengan kromosom yang berkualitas buruk dalam populasi tersebut. Kromosom berkualitas baik mempunyai kemungkinan yang lebih besar untuk terpilih sebagai induk. Jika algoritma genetik tersebut belum mencapai kondisi untuk berhenti maka akan dibentuk generasi berikutnya yang dikenal dengan istilah anak (offspring), terbentuk dari gabungan 2 kromosom generasi sekarang yang bertindak sebagai induk (parent) dengan menggunakan operator penyilangan (crossover). Bila crossover tidak menghasilkan solusi, maka dipakai operator mutasi.
Intelligent System Intelligent System Reviewed by SebutsajaGINTOKI on 08.59 Rating: 5

1 komentar:

Diberdayakan oleh Blogger.